返回主站|会员中心|保存桌面
普通会员

上海西邑电气技术有限公司

西门子数控系统,S7-200PLC S7-300PLC S7-400PLC S7-1200PLC 6ES5 ET200 人机...

新闻分类
  • 暂无分类
站内搜索
 
友情链接
首页 > 新闻中心 > 西门子3KW变频器6SE64402UC230CA1
新闻中心
西门子3KW变频器6SE64402UC230CA1
发布时间:2018-09-22        浏览次数:142        返回列表
 西门子3KW变频器6SE64402UC230CA1:无滤波器 200-240V+10/-10% 1 AC/1/三相交流 47-63Hz 恒定转矩 3kW 过载 150% 60S,200% 3S 二次矩 3kW 245x 185x 195(高x宽x深) 防护等级 IP20 环境温度 -10+50°C 无 AOP/BOP

恒压供水调速系统能够实现水泵电动机无级调速,可依据用水量的变化(实际上为供水管网的压力变化)自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今**、合理的节能型供水系统,且技术日趋成熟。

PLC 与变频器应用到恒压控制系统后,使系统运行可靠,控制精度高既节省了人力又节约了能源,同时在变频器软启动下,使电机、水泵的使用寿命得到延长。

1 系统工作原理

1.1 变频调速的节能原理

图1 中曲线1 是阀门完全打开时供水系统的阻力特性曲线,曲线2 是额定转速时泵的扬程特性曲线,供水系统的工作点为A,流量为qa,扬程为ha,电动机的轴功率与面积O-qa-A-ha-O 成正比。要将流量减少为qb的主要调节方法有两种:传统方法是保持电动机(水泵)的转速不变,将阀门关小,阻力特性如曲线3 所示,工作点移至B点流量为qb,扬程为hb,电动机的轴功率与面积Oqb-B-hb-O成正比。采用变频调速是保持阀门的开度不变,降低电动机(水泵)的转速,这时扬程特性曲线如曲线4 所示,工作点移至C 点,流量仍为qb,但扬程为hc,电动机的轴功率与面积O-qb-Chc-O成正比,实现了节能的目的。

1.2 系统控制方案及水泵循环投切原理

系统变频调速由PLC 与变频器共同完成,其原理如图2 所示。在水站出水管处放置一个压力传感器,变送器负责将传感器压力信号转换为1耀5 V直流电压信号送入PLC 的闭环控制模块,该信号与压力给定值相比较,并经PID运算,由模块输出一个4耀20 mA(也可为0耀10 V)的控制信号送往变频器,控制变频器输出频率,实现电动机的无级调速,达到输出供水管水压稳定在所设定的压力。

图2中,接触器K1,K2,K3 使水泵工作在工频状态,而K4 ,K5 ,K6 则与变频器输出相连使水泵工作在变频状态,考虑到每台水泵不能同时工作在工频与变频状态,在电气设备上采用接触器联锁保护。初始状态,变频器输出连接在**台水泵电机上,管网压力上升,当压力小于给定值,需要加泵时,由变频器的继电器输出端口发出信号到PLC,由PLC 控制切换过程。变频器停止输出(变频器设置为自由停车),利用水泵的惯性将**台水泵切换到工频运行,变频器连接到第二台水泵上起动并运行,以此类推,将第二台水泵切换到工频运行,变频器连接到第三台水泵上起动并运行。

需要减泵时,系统将依次将**台水泵停止,第二台水泵停止,这时,变频器连接在第三台水泵上。

这种方式保证**有一台水泵在变频运行,三台水泵中的任一台都可能变频运行。这样,才能做到不论用水量如何改变都可保持管网压力基本恒定,且各台水泵运行的时间基本相同,这给维护和检修带来方便,并提高了系统的使用寿命。所以,大部分的供水厂家都基本采用此循环投切方案。

但此方案也有不足之处,就是在只有一台变频器运行并切换到工频过程中会造成管网短时失压,在设计时应充分地引起重视。另外,在图2 中还可增加软启动器作为备用。当变频器或PLC出现故障时,可用软起动器手动轮流起动各泵运行以保证正常供水。

系统运行后,变频器的输出端不能连接电源,也不能在运行中带载脱闸,切换过程应按以下的程序进行。循环投切恒压供水系统投入运行时,当变频器的输出频率达到频率上限(变频器可设定为50 Hz),运行60 s管网水压未达到给定值,此时,该台水泵需切换到工频运行。切换过程是先关该台水泵电磁阀,然后变频器停车(停车方式设定为自由停车),水泵电机惯性运转,考虑到电机中的残余电压,不能将电机立即切换到工频,而是延时一段时间,到电机中的残余电压下降到较小值,保证与电源电压不同相时造成的切换电流冲击较小。例如某水厂160 kW水泵电机的切换时间为600 ms,连接在电机工频回路中的空气开关容量

为400 A。关阀后停车,水泵电机基本上处于空载运转,到600 ms 时电机的转速下降不是很多,使切换时电流冲击较小。切换完成后,再打开电磁阀,已停车的变频器起动并运行另外的水泵。当变频器输出检测到频率下限(可设定为30 Hz)后,应该切除**早启动的工频泵,切除工频泵时,也应先关阀,后停车,这样无“水锤”现象产生。上述这些操作都是由PLC控制自动完成。

2 系统软件实现

整个系统的执行过程全部是由PLC来自动完成的,PLC 根据变频器发出的频率上限与下限信号来控制3台水泵电机之间的循环投切,经对比,3 台水泵之间的切换是有规律可循的,因为在同一时间只有一台水泵处在变频状态,所以用变频水泵的状态作为查询状态位,工频状态位作为次判断位,来分步编写PLC的程序。系统选用日本立石公司的CPM2A 系列PLC,确定6 个交流接触器的输出分别为K1

(10.00),K2(10.01),K3(10.02),K4(10.03),K5(10.04),K6(10.05),变频器频率上限信号输入为0.00,下限信号输入为0.01。假设现在变频器处在**台工频,第二台变频状态下,接触器K1、K5 处在闭合状态,即10.00、

10.04 输出为1,其它输出点输出为0,则系统部分程序如图3 所示。

图3 中只是简单的程序思路,而切换过程中还要考虑时间延时以及电磁阀的动作

问题,这里不多介绍。

3 结语

以CPM2A 系列PLC和变频器为控制器的多泵恒压供水系统已在某学校投入使用,试验结果证明,系统供水压力稳定,控制精度高,运行可靠,节省电能,系统至今运行正常。


一、变频器概述

变频器主要分为两类:电压型,将电压源的直流变换为交流,其直流回路通过电容滤波。输出电压波形为矩形波电流波形近似正弦波。一般要深度负反馈,有稳定作用;电流型,将电流源的直流变换为交流,其直流回路通过电感滤波。电流波形为矩形波电压波形近似正弦波。一般为正反馈,有增益作用。

现在的变频器主要采用VVVF变频或矢量控制变频,也就是先把工频交流电通过整流器转换成直流电源,再把直流电源转换成频率、电压均可控制的交流电供给电机。但是VVVF缺点是输入功率因数比较低,谐波电流大,直流电路需要大的储能电容。

变频器的主回路构成:电源输入—整流桥—启动电阻—母线电容—制动单元(制动电阻)—逆变桥—电源输出。主电路是给异步电动机提供调压调频电源的电力变换部分,它由三部分构成:

1、整流电路:将工频电源转变为直流;

2、平波回路:吸收在变流器和逆变器产生的电压脉动;

3、逆变电路:将直流转变为频率可调的交流电。

图1

二、主要参数测量

对与其工作系统主要是由变频器和变频电机两部分组成。而针对于变频电机主要的故障有过流、过压、欠压、过热、输出不平衡、过载等。常见的变频器应用为电动机控制系统,整个系统需要对变频器输入、输出信号进行测量,同时需要测量电机的扭矩及转速等系统特性。

图2

输入输出参数:电压、主要的测量参数包括:电流、功率的额定值,输入额定容量、出过载能力,功率、功率因数,输出频率范围;直流母线参数:电压、电流、功率;效率与谐波:转换效率,谐波失真。致远的MPT电机测试平台专业打造测试环境。凭借在功率分析、电机测量领域的深入理解、与长久积累,融合仪器设计与系统集成的理念,打破了传统测功机的性能瓶颈,引领电机试验进入动态时代。

1、 专业、标准化的电机测试功能体验;

2、 融合功率分析仪的优秀指标与丰富测试功能;

3、 行业独有的电机驱动系统瞬态测量。

图3

电机的调速与控制,正在以其卓越的性能和经济性,可以说在调速领域,这样的系统完全改变的传统的调速方式。大大的提高了生产效率并节约了能源。